VSteroid: 2-Player Asteroids-Based Duel
Game

Robi Jenik, Jishnu Dey, Kyle Wigdor, Jacky Zhao
https://github.com/nvdaz/vsteroids/tree/main

VWSTEROID

FRESS START

Overview

The goal of this project was to create a spin of the classic arcade game Asteroids on
an UPduino FPGA.

The original game is a single-player game in which the player controls a ship
on a top-down board. The ship is able to move about the screen by rotating and using
a main thruster. Important to the movement of the ship is that it is heavily
physics-based, with a pronounced acceleration curve, and little to no automatic
deceleration, giving an appropriately space-y feel.

The player’s objective in the original is to avoid collisions with the titular
asteroids which drift around the screen, through a combination of evasive maneuvers
and using the ship's gun, which it can use to destroy the asteroids.

https://github.com/nvdaz/vsteroids/tree/main

In our version, there are now two ships—one per player, and the players’ objectives
are no longer to survive as long as possible, but rather to kill (or merely outlast) the
other player. A tie can result if both players die at the same time, such as if their
ships collide. Asteroids still intermittently cross the screen, but are no longer
destructible.

Result Preview:

This image demonstrates the key components of the game, such as the ships, the projectiles, and the asteroids.

The asteroids act as unpredictable, moving terrain that the ships must avoid as they engage in combat with
each other.

Technical Description

Image of the Block Diagram:

PLL (CLK)
ol
¥
Ship 1 Projectile Ctr
* position Per projectile (N per player)
p = velocity HOOT—=! * Artive?
* rotation * Position
Sprite hitmap * Direction
rom * Player who shot it (for player limits)
Button inputs - !
L CLK Button Inputs———
\RESET
k,
Oceupied Pxl WIVRC
| VGA el HSYNC- / DISPLAY
R Valid
RGE
¥ ¥
i
Occupied Prl—
Renderer
Occupied Pxl Collision RGB
i Y
Button Inputs
Button Inp MES Driver f+—— ‘
- CLK— 1 1 P |
| Collisions
|
State ctrl
-
* Start reg RGE
* Game ~
* Player 1 WIN
* Player 2 WIN Game Over
*TIE
* Player 1 WIN
* Player 2 WIN
*TIE

Renderer

The renderer module chooses what color each pixel should be on the screen for every
frame. To this end, it receives the current row and column being rendered by the
monitor (see the VGA driver module), and x and y positional values (in pixels) from
each entity (ships, projectiles, and asteroids). It also has internal positions for text
sprites which are displayed on a per-state basis.

These x and y positional values correspond to the top-left corner of the entity’s
sprite’s corner. Thus, the difference of the column and the x-position/the row and the
y-position results in the pixel-offset from the top-left corner of the appropriate
sprite. This value is used to get the appropriate pixel from a sprite for a given pixel
on screen (given that the sprite-index is in-bounds). This is done separately for every
entity. The result is that for any pixel on screen, each game entity makes a claim
about what the pixel’s value should be. If no claim is made, the color of the pixel is
rendered as black.

An important realization early on was that the process of resolving which of these
values a pixel should take on could be exploited to check for collisions-two in-game
entities have collided if and only if both entities’ sprites laid claim to the same pixel.
Thus an important secondary role of the rendering module was to have a binary
output declaring whether each ship was involved in a collision.

The actual pixel value is handled by creating an ordering of priorities to each entity
making a claim to a pixel.

Red Ship Red Projectile | Blue Ship Blue Projectile | Output

On Ooff Ooff Ooff Red Pixel

Off On Off Ooff Red Pixel

Off Off On Off Blue Pixel

Ooff Ooff Ooff On Blue Pixel

Off Off Off Ooff Black Pixel
Most other combinations should result in a game over by collision. | Purple Pixel,
However, we assign this debug color to any combination we want | Relevant

to detect. Collision Signal

The dynamic background (4 grids of spaced pixels, 2 with dynamic horizontal offsets,
and 2 with dynamic vertical offsets, plus some additional row, col, and counter based
pattern generation) is the second-lowest priority, with the final being black.

Notably, the resolution is handled per “screen,” so a final pixel value is, in parallel,
calculated for each of the different screens in the game. These screens include the
“in-game” screen involving the position of ships, the title screen, and all of the
game-over screens.

A second round of this pixel value conflict resolution happens based on which screen
is currently active. It is not by coincidence that each of these screens corresponds to a
single gamestate, so a single “with STATE select RGB” statement suffices to choose
the ultimate value sent to the physical pins.

Sprites

Images of the ships, asteroids, and text were created using a pixel art editor and then
exported as PNG files. The PNGs were then processed using the Pillow library in
Python to convert them to ROM modules in VHDL.

An example output image of the ship rotated 56.25°. There are 32 such images,
each procedurally generated from an unrotated, base image. Note that the edges
are somewhat ragged, but when actually rendering the sprite on the screen, it is
not as obvious.

For the ship sprite, we needed to generate 32 sprites corresponding to each 32
different rotations. To do this, we first upscaled the ships from 20x20 to 200x200
using nearest-neighbors to preserve the crisp pixelation of the sprites. Upscaling was
done to increase the visual fidelity of the final images. Then, sprites were generated

for all rotations with value %k for all 0 < k < 32 so that each sprite would be

evenly spaced out. Each sprite was then downscaled to 32x32 since this would be the
final size of the ships that would be rendered on the screen.

All images were created with only a few colors to reduce the size needed to store
them in ROM. Some images, like ship sprites, were stored as bitmaps, having just two
colors, and were designated a final color value downstream of the sprite module
itself. While others, like the title screen, had up to four colors. For these, a color table
was created that had entries for each color. A case statement was generated that
would map indexes of each color to their RGB value. Each pixel in the sprite was
mapped to an address in ROM by linearizing the pixel location (x, y) as

i =((x + y x width) << logz(rotations)) | rotation_index . We decided to create a

linear index via multiplication to conserve space. Some of our sprites, such as the 32
different ship rotation sprites, had large non-power-of-two lengths and widths, so
that could have cost a lot of space, which we did not have the luxury of having. A case
statement was also generated that mapped each pixel location to the color index.

Consumers of the sprite were able to interface with the sprite modules by simply
inputting a x and y position (and in the case of the ship, a rotation index). The RGB
value was then the output. The linearization was surprisingly tricky to implement in
VHDL because the multiplication requires that the bit width of the product should
have a bit-width exactly equal to the bit widths of the two factors, and would silently
fail otherwise. In practice, this meant we had to create intermediate signals that were
precisely the right bit width.

The linearized position was also created as an intermediate signal as the sum of the x
position and multiplied y position. Care also had to be taken to ensure that the
addends were either padded or truncated to have appropriate widths. With the
linearized position, the case statement (which were stored in ROM) could determine
the correct color index. The colors’ LUT would then take in this color index and
output an actual six-bit color, which would then be outputted and used in the
rendering module.

Ship Module

50

(0,48) ‘

(20, 44)

40

30

(4,24) ‘ (44,20)

(16,16)
(2,12) (5’115
m (8,8) - (22,10) —
(7,10) o .
(10,7) (11,5) (24, 4) (48,8)
(12, ‘ (12,0) (24,0) | (36,0) 48,0 }
¢| 10 T 20 I 30 I 40 50

This is a representation for our approximations of the four different velocities. The true 2d velocities 1,2,3,4
are represented by the red, orange, blue, and green circles respectively. Only one quarter (8 values per speed) is

shown.
The same ship module was instantiated twice, one for each ship. The ship module
accepts the controls that were being pressed for each player as well as a reset signal,

and handles the positional and rotational logic of the ship. When the reset signal was
high, the ship module synchronously resets the ship’s position and rotation (in the

top left or top right corner) depending on whether the ship was player 1 or player 2,
which was used for when the start menu state transitioned to the in-game state.

While the game is live, the ship’s velocity and rotation are updated depending on the
controls that are being pressed by the player. The ship follows a physical acceleration
model. When the forward button is pressed, acceleration is applied in the direction
that it is facing.

Each frame, if the thrust button is pressed, the appropriate acceleration x and y
values are added to the ship’s x and y velocities; and the current x and y velocity
values are added to the ship’s x and y positional values. Additionally, when the
forward button is not pressed, an acceleration in the opposite direction is used to
simulate a drag force. Perhaps this drag force is not realistic because a real space ship
would not experience such high decelerations, but this makes the controls far more
ergonomic.

To get these appropriate acceleration values, rather than perform the actual trig
calculations, an LUT of approximate x and y acceleration pairs are kept for each
rotation angle. Here we must explain a more general problem that emerges in trying
to represent acceleration and velocity values. Ideally, movement would be
normalized: speed is constant regardless of
direction. However, this is not possible to achieve
with discrete pixel values, or even rational ones
(much to the frustration of Pythagoras and his ilk).
For example, for a speed of 2 pxl/frame at a 45°
angle, the actual normalized velocity is (root 2 over
2, root 2 over 2). Of course, we must then
approximate. But with pixels as our units the best
we can do is (1, 1). This problem gets worse the more

rotations there are, to the point where at low 0 p f
speeds, all 32 directions are impossible to uniquely
represent. Approximation of 45° in discrete coordinates.

The solution is sub-pixel precision throughout the movement logic, in our case, down
to 16'™’s of a pixel by using what are essentially fixed-point numbers. The problem
with approximation occurs when speeds are low, and so relative errors are high. In
spite of this, the position reported to the renderer by the ships is whole pixel-based
by simply excluding the lower 4 bits.

On each frame, the acceleration is applied to the ship, and its velocity is set to the
current velocity plus the current acceleration. Care needs to be taken in this step as
this can potentially cause the ship to go off screen. Before setting the new position,
the module must first check if it goes beyond the edge of the screen, and if it does,
apply appropriate logic so that the ship wraps around to the other side, emulating the
original game.

In a similar vein, the ship rotates either counterclockwise or clockwise when the left
or right buttons are pressed, respectively. To do so, a counter keeps track of the
number of frames passed and on every third frame, it will update the rotation. The
purpose of the counter is to slow down rotation and make it easier to control;
otherwise, the ship’s rotation speed was simply too difficult to make precise rotations
necessary to aim at the other player and move agilely.

Projectile

The projectile was rendered as a 5x5 block of pixels, and its velocity and initial
position were implemented with respect to the rotation of the ship during its
rendering. Because of this, each of the rotations needed to be associated with a
unique projectile velocity and initial position offset depending on the location of the
ship’s front. The different initial offsets of the projectile were obtained by opening
the image that contained the ship rotation sprite and counting the pixels on the x and
y axis to reach the tip of the ship, starting from the upper-leftmost corner. These x
and y pixel values were added onto the position of the ship to accurately spawn the
projectile at the front of the ship when fired. Originally, this feature was
implemented to prevent players from colliding with their own projectiles after they
fired them, causing them to unintentionally lose the game. Different velocities were
used per rotation to ensure that the projectile would travel in the direction that the
ship was facing. The magnitude of the projectile velocity was 144 sub-pixels per
frame, where a sub-pixel represents a 16th of a pixel. A circle of radius 144 was used
to calculate the x and y velocity values per rotation.

The projectile also had an output signal that communicated to the program whether
it was still active on the screen or if it had despawned. A projectile despawns after a
certain number of frames has passed after it was shot, which was controlled by a
counter.

Projectile Controller

The projectile controller managed the magazine of projectiles that each player could
fire. Each frame, the projectile controller would receive an input that stated whether
the fire button was pressed. When pressed, the controller would check whether any
of the three projectiles allocated to each player were active. If any of the projectiles
were not currently active, then the projectile controller would send a signal to that
projectile indicating that it should fire.

Additionally, the projectile controller had to prevent players from shooting all their
projectiles at once when the fire button was held down. To do this, an intermediate
signal was created that would store the last value of the fired signal every clock cycle.
As long as the fire projectile signal was high and the last value was low, the projectile
controller would send a signal to the projectile communicating that it should spawn.

Asteroids

The asteroids aimlessly float about the screen, presenting a neutral threat to both
players, and leading to a more interesting and diverse play. The asteroid module
accepts an initial position and velocity at which to spawn the asteroid, and a reset
signal can be used to reset an asteroid to its initial position, which is used during the
transition from the start state to the in-game state. During the game, asteroids
simply drift at their initial velocity around the screen.

This presents a potential issue: asteroids can move off the screen if the asteroid’s
positional logic is left unchecked. Ultimately, the naive solution to this problem of
simply letting the position signals overflow naturally was eminently satisfactory. As
we were using 10-bit numbers to represent pixel positions, and the x and y range is
only up to the mid-1000 range, each asteroid was on screen about half the time.

With diagonal movement, the final result was relatively unpredictable movement
since players could easily predict the locations of the asteroids while on screen, but
would be very difficult to predict where they would reappear when drifting back on
screen. And with three of them we got a good balance of giving the players space to
move around, but also still having hazardous terrain that forces players to think fast
and improvise.

NES Decoder

NES Controller Timing Diagram:

NEScount _ OXFE)\ OxFF_) 0x00)| 0xO1) 0x02 J Ox03 § 0x04) 0x05) 0x06 J 0x07) 0x08)
NESck | : T ; 7 ; : ? : :

wen [\

clock :] : : : : : : : k
data (from controller) - Y A ¥ B) Select Y St Up) Down) Leit) Right J

The NES decoder handled receiving data from the NES controllers and outputting the
controls to the rest of the program. Using a counter, the NES decoder would read
data into an intermediate vector signal with each bit representing a button on the
NES controller every 8 clock cycles, which is the period of the NES controller. A shift
register was used to store all the data read in, which stored input from all NES
controller buttons since each button was only sent every 8 cycles. Furthermore, when
the counter reached its maximum value, the latch signal was set to high, which
signals to the NES controller that it should output the current button state.

Finite State Machine

We kept track of the game state by using a state machine.

Initial diagram of the game state finite state machine:

The possible states that the game could be in were:

State Description Following states
START | start screen displayed, main game GAME, when either player presses
disabled start

GAME [Main game displayed TIE when both players lose

P1W when player 2 loses

P2W when player 1 loses
P1W Player 1 win endscreen START if either player presses start
P2w Player 2 win endscreen START if either player presses start
TIE Tie endscreen START if either player presses start

These were defined as 3-bit constants, so that we could output these states to other

modules and use their defined values.

The triggers for changing the states were input. The triggers were (the falling of each

player alive signal), the start button pressed from each player’s NES controllers.

VGA Display

This is a simple module that controls the horizontal and vertical sync pulses for the

VGA controller, as well as keeping track of the current row and column being

rendered on the screen.

Results

These were our goals for this project, straight from the project proposal (along with

what we completed):

State of the Project

These were our original goals for the project (and which ones we completed):

Minimum Viable Product:
2-asterotd-styleships
TFerletrning
freceleration/deceteration
el

4 shoottokillopponent-andreset-game

Stretch Goals (time-based):
Start/Victory-sereen
[J Health/Round system (lives)
J Sound
Additi

[Astereids-or-other-terrain

[J Two game modes (original asteroid game)

Current Issues

- Visual Artifacts
During our initial testing, some columns would appear to be swapped or mixed
around in certain conditions (mostly when moving to a higher-valued vertical
column). It turns out that our hsync was one value off, and this fixed the majority of
our problems. However, there were still some similar-looking issues on certain
monitors and iterations of our project. The current version of our project has some
similar visual artifacts.

- Speed changes
The speed of the whole game appears to differ widely between flashes. We know that
this cannot be misinterpretations of our PLL clock or our frame clock, as both would
cause our VGA module to glitch out severely.

- Infinite life
If a player holds down the ‘start’ button while playing the game, their life value
seems to permanently be held to 1. This is to pull off while in normal movement, even
more difficult to think of during our relatively short game, useful for debugging,
shows off the rendering behavior when two objects overlap, and is generally funny to
find out as a player. However, we don’t quite understand the cause of this behavior,
so this is somewhat concerning.

- Reset velocity on start
When a player dies and quickly resets, it can be seen that they may still be moving.
This is because the player’s velocity is never reset between rounds. This adds some

interesting variation to the starting conditions of the game, and rarely leads to unfair
situations like instant deaths. So, we decided to keep this behavior.

Reflection

We completed most of our achievable goals for our project! This could be attributed
to having set our expectations reasonably and focusing on scalability of the final
product. Once we achieved the minimum viable product, we focused on polishing
what we had already and avoided adding complex features, such as sound and
multiple lives for the ships. One massive improvement was going from 8 possible
directions for a ship to 32 directions, which led to smoother rotations and a more
satisfying ship movement. Also, we believe that another factor that greatly
contributed to the accomplishment of many of our goals was our time management.
Our team started the implementation of the final project very early, which enabled us
to successfully set goals for when we wanted our specific features to be completed.
Also, the effective communication between team members enabled us to resolve
meeting time conflicts and problems with the program.

However, our development process left room for improvement. During our labs and
initial collaboration sessions, there were some issues setting up our project so that it
could be developed and tested on multiple different computers. Our solution was to
have two teammates draft up a VHDL module in VHDLweb, and then two teammates
would be working to integrate the previous day’s drafts into our project. This had the
unintended effect of needing a lot of code to be intensively debugged and even
rewritten. Instead, we should have figured out the issues with our Radiant
environments, and then worked on different

Work Division

=
o
=K

VGA module

Row-column/x-y positional offset into sprite index logic
Rendering layering logic

Collision detection logic

Backgrounds

State machine implementation

Projectile controller module debugging

Art direction

Kyle:

Sprite pixel coordinate to linearized ROM indexing logic
Pixel art to ROM conversions

Asteroid Module

General integration and debugging

Generation of ship rotation images

Acceleration of the Ship
e Sub-pixel position logic and additional rotations
Jacky:
e Pixel art
Projectile Module
Projectile Controller Module
NES Module
Asteroid Module
Projectile Velocity and Offset Logic

Jishnu:

State machine design and implementation

Ship design

Ship rotation behavior

Ship movement and acceleration design

Scripting (32 rotation speed calculation and VHDL)

Projectile Velocity and Offset Logic

	VSteroid: 2-Player Asteroids-Based Duel Game
	Overview
	Result Preview:
	
	
	
	
	
	Renderer
	Sprites
	
	Ship Module

	​This is a representation for our approximations of the four different velocities. The true 2d velocities 1,2,3,4 are represented by the red, orange, blue, and green circles respectively. Only one quarter (8 values per speed) is shown.
	Projectile
	Projectile Controller
	Asteroids
	NES Decoder
	Finite State Machine
	VGA Display

	Results
	State of the Project
	Current Issues

	Reflection
	Work Division

