Junior Design Final Documentation & Schematics

The Waymo-ers
Chris Foraste, Miles Houston, Devon Kumar, Jacky Zhao

General Overview:

The goal of this project was to design a robotic car with the ability to navigate a track
containing lines of different colors while avoiding collisions using custom-made color and
distance sensors. Furthermore, the robotic car was designed to enable communication between
itself and another robotic car through the usage of Web Sockets to perform joint track navigation.
Finally, an additional feature was implemented to allow users to remotely control the robotic car
using hand movements.

Mechanical Documentation:

Design Strategy:

To improve aesthetics, cable management, and adaptability, we designed a modular robot
chassis with flexible electronics mounting points. The polycarbonate chassis plate, on which all
components are mounted, features a periodic array of mounting holes. These holes were
incorporated early in the design process to allow for future flexibility in attaching electronics and
breadboards that we might not have been able to anticipate at the time. In addition, we included
several larger-diameter holes near the motors and at other strategic locations to route wire
bundles through the chassis. These openings significantly improved cable management and
helped keep wiring organized and unobtrusive. As the electronics were assembled, we also made
an effort to consolidate related components onto dedicated breadboards, often grouping them
with their associated sensors. This modular organization further contributed to a cleaner and
more maintainable robot.

1
L]

i
2362 2,139 %
f

Robot Frame

‘ A EE31-0001 [-

[N T

2 [1

Figure 1. Key Dimensions of Autonomous Vehicle

For the Go-beyond, one of our primary goals was to ensure that the attachment was
secure, comfortable, and enabled full access to all the M5’s ports. As such, we created a sewable
mount, designed to be small enough to fit on the back of the average hand, thereby preventing
any mobility issues. The ten separate mounting holes provide a strong and secure attachment that
allows the microcontroller to easily move with the glove. Due to the low weight of the
microcontroller and the smooth surface of the mount, a simple piece of masking tape is sufficient
to mount the microcontroller, even when the controller is held upside down or shaken. Finally,
the case was made to be open so the LCD can be seen and all of the buttons on the controller can
be accessed normally.

2 1
B 25,10 B
H-¥-¥-¥ :
[FCEITE v I 1 v i Y
P2.02 ¥ 10 7.00 = *sz
1220 X 8 7___|
49.00
300 —= {
5.85
A BAASEE ATE s .::::D oF nris = A
b Go Beyond
g = Aftfachment
s SEE DWG. HO.
T A EE31-0002

apeICAIGH 5O 43I SEAIE DRAE. SCALE 1.1 WEIGHT: SHEET 1 OF 1

2 1
Figure 2. Go Beyond Attachment Schematic

Electrical Documentation:

Distance Sensor:

The distance sensor consists of two separate modules, each consisting of two IR LEDs
and a phototransistor. 470 Ohm resistors were used to limit the current through the IR LEDs and
IM resistors were used to bias the phototransistors appropriately. This produces a voltage
between 0 and 5 Volts at Vb and Vd, which are fed into pins Al and A3 on the Arduino board
respectively. The only difference between the two modules is their physical distance, with the Vd
module being further from the robot than the Vb module. This allows for background light
subtraction, with the Vd module detecting the wall and the Vb module providing a stable
reference point (see Figure 4).

Figure 3. Schematic of the circuit used to design the distance sensor.

Voltoge

N

bnu-_‘(-lafowul rense/”

N
J/Luu D i Herence. ("\]h!lr_é N 0.'3\})
Mmein senSov”

low

AN .
— 7 Distance *o wWall
Bockgromdt Semier hll high Wl Vet Foo

) Tef Vigw

Figure 4. Theory behind the distance sensor.

Color Sensor:

The color sensor consists of two banks of three LEDs, a Jameco photocell, and two NPN
transistors used to control power delivery to the LED banks. Each transistor is driven by a digital
output pin on the Arduino, allowing the corresponding LED bank to be powered when the digital
signal is high. Both LED banks share a common 100 ohm current-limiting resistor. The Jameco
photocell is used to measure reflected light intensity and is wired in series with a 240 ohm
resistor to form a voltage divider. The resulting voltage is connected to an analog-to-digital
converter input on the Arduino.

Figure 5. Schematic of the circuit used to design the color sensor.
H-Bridge and Motors:

The H-Bridge and Motors circuit was made using an 1.293D dual H-bridge motor driver
chip. It uses pulse width modulation input into the 1A to 4A input ports to control the motors
through the 1Y to 4Y output ports. The speed of the motors are controlled by the duty cycle of
the pulse width modulation. The battery and L293D chip share a ground with the Arduino to
ensure proper voltage difference readings.

MotorDriver

1.2_EN veer P8Oy
[DigtalPin3 »2{1a up L2 DigitalPink ;
1Y 4y ight Motor
GND GND 2(ArduinoGND |
M1 o2 GNE oD L2
Left Motor 6 4y o 11. o T:i
24 3 P Digita Ping == Maotor Battery
8lveez 54 EN EArdumoGND

Figure 6. Schematic of the H-Bridge circuit.

Voltage Divider for Voltage Reader:

Due to the 5V limitation of the analog-to-digital converter of the Arduino’s pins, it was
necessary to step-down the 9V battery to a voltage level that was readable and safe for the
Arduino’s analog pins. A voltage divider circuit was implemented consisting of an R1 value of
10k Ohm and an equivalent resistance R2 value of around 12.5k Ohm made from 3 resistors
wired in series. The voltage of the node between the 10k Ohm resistor and the other resistors was
connected to pin A4 of Arduino to convert the voltage using the analog-to-digital converter. This
digital voltage was then used in the software to determine the state of the battery. After
determining the state of the battery, an LED in the circuit shown in Figure 8 would light up to
indicate to the user if the battery needed to be charged. The circuit consists of 3 LEDs wired to
different digital pins on the Arduino connected in series with 330 Ohm resistors.

<t
<

R3 R4

2k 470

3

Figure 7. Schematic of the voltage divider circuit.

ArduinoGND
R1 R2 R3
330 330 330
GreenLED YellowLED RedLED
A e ASHAN
D D D
<+)DigitaIPin13 DigitalPin12 C+>DigitaIPin8
T sV 5V _ T s5v
ArduinoGND

Figure 8. Schematic of the voltage checker indicator circuit.

Schematic of the Entire Robot:

el
Voltage Indicater Cireuit us
+ BTL 1
Arduine Babtery T
Arduino
Distance Sensor uz A ne scL 13 Color Sensor U1
21 |oREF spa L6,
-3 RESET AREF L2
] L 43y3 i (L8
W 3l gy p13 L2
blanp b1z 22
LAV pi1 L
81y -po B2
3l a0 -pg 3
Voltage Divider Circuit Ui i: w b j;
- =S A2 D7 == H-EBridge and Maters Circuit U3
12] 4+ _pg 26 -
13 o4 _ps 127
L D4 (28, -
o 128 (
b2 B%
D1/ Bl
Do/RY P2

Figure 9. High-level schematic overview of the entire robot showing how all the circuits and
components are connected to the Arduino.

Software Documentation:

Main Code Repository Link: https://github.com/devonk(05/EE31-Project

Go-Beyond Code Repository Link: https://github.com/chris-foraste/EE31_MS5StickC

Color Sensor:

The goal of the color-sensing algorithm is to use intensity measurements from a photocell
to determine whether the sensor is viewing a track line or the darker background of the board.
The algorithm operates in three stages First, the system reads normalized intensity measurements

https://github.com/devonk05/EE31-Project
https://github.com/chris-foraste/EE31_M5StickC

from the photocell. Because the sensor uses two differently colored LEDs, each color
measurement consists of two readings— one for each LED. Second, the resulting pair of intensity
values is compared against four pre-calibrated measurement pairs, corresponding to the four
colors on the track. The algorithm determines the closest match by computing the L2 norm of the
difference between the measured values and each pre-calibrated pair. Finally, the identified
closest match is stored in a rolling list of the five most recent measurements. A majority vote
over these measurements is used to determine the final color output of the algorithm.

Distance Sensor:

The distance sensor code takes a differential measurement between the phototransistor
placed further from the robot (the active sensor) and the background light sensor closer to the
robot. This is then passed through a five point moving average filter, which dSensor.poll()
returns. If the difference is greater than an adjustable threshold in main (0.65 Volts), then the
robot knows it has detected a wall.

Drivetrain:

The drivetrain class is built off of the wheel class. The wheel class acts as a software
interface between the motor and the arduino. The wheel class contains only pin definitions. The
pins are digitally-written so they output PWM to the H-bridge. The drivetrain inherits two wheel
objects, which are used in the bot’s movement commands such as go, reverse, turn, pivot, etc.
The drivetrain manipulates the duty cycles written to the H-bridge in order to produce the desired
bot motion. The drivetrain also features distance and time parametrized overloads of the standard
movement commands by running for a specific duration met by the argument passed to the
function. The drivetrain is used in several classes within the overall bot and serves as a
foundational piece of building the other components.

Voltage Reader:

The Voltage Reader class contained two functions that enable the user to monitor the
voltage level of the batteries used on the robot. The first function is called read() and it uses the
built-in analogRead() function on Arduino to read from pin A4. The voltage is then multiplied by
5 and then divided by 1023. This is because the analogRead() function maps the input voltage to
10 bits, which can represent numbers from 0 to 1023. 0 corresponds to 0 volts and 1023
corresponds to 5 volts. Thus, the function reads the input voltage and converts the 10 bit voltage
representation back into a float from 0 V to 5 V. The second function in the class is called
voltCheck(). It calls the read() function and uses if-statements to determine whether to turn on or
off pin 8, pin 12, and pin 13. Pin 13 turns on the green LED, which signals that the battery level
is within acceptable operating range (battery voltage greater than 3.5 V). Pin 12 turns on the

yellow LED, which signals the battery level needs to be charged soon (battery voltage between
3.5 Vand 3 V). Pin 8 turns on the red LED, which signals the battery is not usable and needs to
be charged immediately (battery voltage is below 3 V). The battery voltages used in the
if-statements are the voltage readings after the voltage of the battery is stepped-down using the
voltage divider circuit. Finally, only one pin is turned on at a time, so the other two pins are
turned off.

main.cpp / Main:

The main file of the src folder contains the function definitions for the Web Socket in
addition to several of the Arduino state machine functions. The user is able to define which track
navigation mode they are in by setting the respective global variable as true and the other 2 false.
To clarify, there are three modes: Solo Track Navigation, Partner Navigation as Bot 1, and
Partner Navigation as Bot 2.

Main begins by instantiating system objects such as the drivetrain, the line-following,
distance sensor, and color sensor. Within setup(), the arduino configures PWM pins, performs the
startup protocols for the sensors, and establishes a connection between the arduino and the Web
Socket server. Between setup() and loop(), some static state variables are declared to aid in
keeping state transitions predictable by preventing repeat state-action on successive loop
iterations.

Within loop(), the bot is initialized to an idle or beginning state (contingent upon the
navigation mode). When the necessary trigger is asserted, state transitions begin. At the
beginning of each loop iteration, messages are read in from the server in order to check for
relevant messages sent via the Web Socket from the partner team (if not solo navigating). A large
‘if” statement then checks the state (an integer), driven by the color sensor, line-following
algorithm, and the Web Socket the distance sensor, and dictates drivetrain logic. If the bot is in
partner navigation mode, it may also send a message via the Web Socket depending on the
specific state.

Go Beyond Main:

After adapting Devon’s Web Sockets code to connect the M5StickC to the Web Sockets
server, the controller takes a differential IMU measurement between its orientation and a user set
base orientation. Depending on the measurement, it sends a command over Web Sockets to the
main robot, which has a receiver that parses the commands into driving functions. Pressing the
central button sets the base orientation to the current position (thus also serving as an emergency
stop button). Pressing the right side button switches whether the robot is listening to the glove or
its track navigation by sending a Web Sockets message. An internal state also tracks the current
method of control, and the glove will not send Web Sockets messages in track mode unless it is
to turn glove mode on.

Go Beyond IMU:

Because the M5StickC only has an accelerometer and gyrometer, a Kalman filter was
implemented to accurately predict the angle of the glove. Each loop cycle, the IMU’s orientations
are updated through the Kalman Filter and it outputs its current orientation, accounting for taring.
Taring is controlled by pressing the central button, which sets the current orientation as the zero
point.

Materials and Cost:

Link: Materials and Cost Spreadsheet

The total final cost of the project is around $265 dollars. The main expense of the project
was the usage of 3 Arduino Uno MK2 WiFi boards for testing purposes and the parallelization of
work, which contributed a cost of around $162 to the project. However, only one Arduino board
was used in the final product. Thus, the cost could be reduced to around $158 dollars if only one
Arduino was used throughout the research and development part of the project. The tradeoft of
this reduction in cost would be longer production time.

Component Quantity Cost Per Part Total Cost
Acrylic Board 1 $7 $7
Arduino Uno MK2 WiFi 3 $53.80 $161.40

Ball Extension 1 $0.10 $0.10
Color Sensor Attachers 4 $0.10 $0.40
Half-Breadboard 2 $1.20 $2.40
IR LEDs 10 $0.15 $1.50
880nm phototransistor NPN 8 $0.68 $5.44
Mini Breadboard 1 $1.00 $1.00
2.5mm Screw 10 $0.20 $2.00
JameCo Photocell 4 $1.49 $5.96
100 Ohm resistor 6 $0.10 $0.60
220 Ohm resistor 3 $0.10 $0.30
1k Ohm resistor 1 $0.10 $0.10

10 Ohm resistor 2 $0.10 $0.20

https://docs.google.com/spreadsheets/u/1/d/1rUucM128nHr1B48mzbs0vBcDA7oZrxVfA9u2COD_588/edit

100k Ohm resistor 1 $0.10 $0.10
10k Ohm resistor 2 $0.10 $0.20
330 Ohm Resistor 4 $0.10 $0.40
3.3k Ohm Resistor 1 $0.10 $0.10
2k Ohm Resistor 1 $0.10 $0.10
470 Ohm Resistor 6 $0.10 $0.60
1 MegaOhm Resistor 4 $0.10 $0.40
10 MegaOhm Resistor 4 $0.10 $0.40
BS170 MOSFET 6 $0.25 $1.50
0.1 uF Capacitor 1 $0.40 $0.40
0.047 uF Capacitor 1 $0.40 $0.40
LEDs 14 $0.20 $2.80
Rechargeable 9V Batteries (2) 1 $2.39 $2.39
Battery Clips (20) 0.05 $8.95 $0.45
Pololu Wheel 60x8mm (pair) 2 $5.71 $11.42
E Switch 1 $0.79 $0.79
Pololu Mini Plastic Gearmotor Bracket Pair -

Tall (pair) 2 $5.95 $11.90
Ball Caster with 3/4" plastic ball 1 $5.49 $5.49
L298DNE Motor Driver 3 $4.61 $13.83
Green Protoboard 2 $0.40 $0.80
TC4584BP Hex Inverter 1 $0.41 $0.41
Pushbutton Switches 3 $0.10 $0.30
Distance Sensor Holder 1 $0.15 $0.15
3D Printed Arduino Attachment 1 $0.30 $0.30
MS5StickCPlus 1 $19.99 $19.99

Total Cost $264.0175

Table 1. This table contains all the components, the quantities used and the individual costs per
part, as well as the total calculated cost of the project.

Picture of Robot:

b

Figure 10. Picture of the Completed System

Addressing Customer Desires:

There were several ways in which customer desires were addressed in the development of
the robot. Customers would want an indicator to check the status of the batteries and whether or
not they needed to be charged. Thus, an LED voltage indicator circuit was implemented to show
the user the current status of the battery that provides power to the motors. Monitoring the motor
battery indicates whether both batteries need to be charged because the motors require more
power, so when the motor battery level drops below the threshold, it would be reasonable to
charge both batteries. Many of the wires were also braided and 3D printed component holders
were produced, addressing the customer desire for neatness.

Addressing Software Security Concerns:

In order to prevent the bot from being controlled by an unauthorized machine over the
Web Socket, we implemented a very basic encoding/decoding scheme in collaboration with our
partner team. This encoding/decoding scheme’s purpose is two-fold: with a noisy/heavily
trafficked server, selecting which message to use can be difficult, and the security measure
dramatically reduces the load that the Arduino must process. Additionally, the uniqueness in the
bot commands sent via the Web Socket makes it so that a potentially malicious machine must
know exactly what the encoding/decoding schema is, and then must send the message within a
very short window in order to hijack the bot. The procedure is described in the next paragraph.

In addition to the ID/tag sent to the server with each message, the partner team must send,
as one string “Waymo[Cmd][Time]”. Any deviations from this will result in a command not
being processed. This is all a secondary defense, since the stripping of the partner ID is
performed at each WSreceive, verifying the identity of the sender.

Quick Start Instructions - Track Navigation:

1. Charge batteries to ~8.5V. Lower voltages may hinder bot performance.

2. Load up the desired program. For solo-track-nav, there is a boolean at the top of main.cpp
that corresponds to the side of the track you wish to run. Look for “BLUESIDE” and
upload the code to the bot.

3. Power on the robot by FIRST plugging in the arduino (look for battery leads connecting
directly to the arduino). Then, SECOND, quickly plug in the battery attached to the
h-bridge breadboard.

a. Usually, there will be a few second pause as the bot attempts to connect to wifi
and then it will drive straight. Sometimes, if you do not plug in the batteries
quickly, or in the wrong order, you will start in a turning state. If this happens,
power cycle the bot and restart (3).

4. Set down the bot on the corresponding side of the track and cross your fingers!

Quick Start Instructions - Go Beyond:

Charge the batteries to approximately 8.5V.

Load the main.cpp program from the EE31-Project repository onto the robot

Plug the battery directly connected into the Arduino. DO NOT plug in the motors yet.
Load the main.cpp program from the EE31 MS5StickC library onto the M5 Stick if it has
not been already.

5. Disconnect the glove from the computer. If the LCD turns off, press and hold the leftmost
button until power returns to the controller.

b .

10.

Press the button on the upper right side of the casing until you see Mode: Glove on the
screen.

Put your hand straight out in front of you, with your palm face down. Then, with your
other hand press the large button that says M5. You should then see “Command: S” on
the screen.

Now that your robot is safely stopped, you can plug the motor battery in. Try and keep
your glove hand flat while you do this.

The robot should now be able to drive. Rotate your hand left and right to turn. Raise your
arm to drive forwards and lower it to reverse. Return your arm to the neutral position to
make the robot stop. Refer to the posing diagram on the next page for a more precise
depiction if needed.

If at any time you feel the controls have become unresponsive, press the central button to
reset the internal angle measurements.

Upload Mode

Power Reset Change

{hald) Angles

Figure 11. Controls for the Go Beyond Controller

Posing Diagram:

Action Image Action Image
Stop (S) Go (G)
3? [\
Turn Left (L) W Reverse (B)
Turn Right (R) ﬁ

Table 2. Available poses for the Go-Beyond Glove Controller

	General Overview:
	Mechanical Documentation:
	Electrical Documentation:
	Materials and Cost:
	Picture of Robot:
	Addressing Customer Desires:
	Addressing Software Security Concerns:
	Quick Start Instructions - Go Beyond:
	
	Posing Diagram:

